Magnet Helium Flow Passage Parameter Summary

Pressure drop for turbulent flow in a non-circular conduit is $?P? \frac{?v^2}{2} \frac{L}{R_t} f$ where ? is average fluid density, v is average fluid velocity, L is conduit length, R_h is channel hydraulic radius, and f is friction factor based on hydraulic radius (which is D/4 for circular pipes).

Substituting \overline{m} ? ?vA where \overline{m} is mass flow and A is conduit cross-sectional

area gives
$$?P? \frac{m^2}{2?A^2} \frac{L}{R_h} f$$

Substituting the definition for hydraulic radius: R_h ? $\frac{A}{W}$ where W is wetted perimeter,

we have
$$?P? \frac{m^2}{2?A^3} WLf$$

For turbulent flow, friction factor depends on Reynolds number to the 1/4 power and on surface roughness. Neglecting those, one can see that pressure drop per unit length is proportional to W/A³, wetted perimeter divided by flow area cubed.

Thus, for the non-circular flow passages in our magnets, one can compare effective passage sizes by means of the parameter, W/A^3 .

Magnet passage	Total wetted perimeter (W) (cm)	Total flow area (A) (sq cm)	W/A ³ (cm ⁻⁵)	Equivalent tube size (cm dia)	Comments
TeV dipole single-phase TeV dipole two-phase	112.568 45.898		0.020 0.025		Total for inner and outer channels Annular space
Present low beta single-phase Present low beta two-phase	114.480 174.670		0.030 0.009		Outer collar channels and yoke holes only Annular space
LHC IR quad coldmass	62.830	78.540	0.000	8.71	4 x 50 mm holes only
BTeV IR quad coldmass	56.000	24.000	0.004	4.37	Yoke rectangular slots only

One can see from the equivalent tube sizes that our new low beta cold mass has plenty of single-phase flow area in the present design. If various slots and passages become filled with buswork or instrumentation, we should again check effective flow area.